Direct Simulation of Ultrafast Detonations in Mixtures

نویسندگان

  • Patrick D. O’Connor
  • Lyle N. Long
  • James B. Anderson
چکیده

For nearly a century experimental measurements of the velocities of detonations in gases have been found in general agreement with those of the Chapman-Jouguet (C-J) hypothesis predicting velocities, relative to the burned gases, equal to the speed of sound in the burned gases. This was further supported by the Zeldovich von Neumann Döring (ZND) theories predicting Chapman-Jouguet velocities for detonations in which the shock and reaction zones are separated. However, for a very fast reaction, the shock and reaction regions overlap and the assumptions required for the C-J and ZND theories are no longer valid. Previous work with the direct simulation method established conditions for forcing the reaction and shock regions to coalesce in a detonation wave by means of a very fast exothermic reaction. The resulting detonation velocities were characterized as ultrafast, as they were found to exceed the steady-state velocities predicted by the C-J and ZND theories. Continued investigation into the ultrafast regime has allowed for the further development of this inconsistency with theory by including a heavy non-reacting gas in the mixture. The resulting gaseous mixtures closely followed the C-J predicted behavior for slow reactions, and for very fast reactions were found to produce ultrafast detonations with a substantially greater deviation from C-J behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Direct Simulation of Detonations

In this paper we review the status of the simulation of detonations using the direct simulation Monte Carlo method and report on progress in applications to the hydrogenchlorine system. Recent work with this stochastic approach has demonstrated successes in treating simple model systems, confirmed many of the details found in earlier analyses, and revealed new phenomena such as ultrafast detona...

متن کامل

High-resolution Simulation of Detonations with Detailed Chemistry

Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But the accurate approximation of realistic detonations is extremely demanding, because a wide range of different scales need to be resolved. This paper describes an entire solution strategy for the Euler equations of thermally perfect gas-mixtures with detailed chem...

متن کامل

High resolution GPU-based flow simulation of the gaseous methane-oxygen detonation structure

A gaseous detonation is a combustion-driven, compressible wave propagating at supersonic speeds. Experimental visualizations and numerical simulations confirm that detonation waves have a complex, multi-dimensional, cellular structure generated by various gasdynamic interactions (Ohyagi et al. 2000; Ng and Zhang 2012). Except in special combustible mixtures (such as argon-diluted mixtures) with...

متن کامل

Direct Simulation of Pathological Detonations

In previous papers we have demonstrated how the direct simulation Monte Carlo method can be used to simulate detonations. Those simulations were limited to exothermic reactions. In this paper exothermic and endothermic reactions are simulated. Under these circumstances, one obtains pathological detonations. That is, these simulations cannot be predicted using the well-known Chapman-Jouguet hypo...

متن کامل

Accurate Estimates of Fine Scale Reaction Zone Thicknesses in Hydrocarbon Detonations

Fully resolved predictions of steady, one-dimensional detonations near the ChapmanJouguet state in mixtures of methane-air and methane-oxygen-argon are presented. The model is restricted to inviscid continuum mixtures of calorically imperfect ideal gases described by detailed Arrhenius kinetics. Consistent with estimates from an underlying molecular collision theory, an eigenvalue analysis of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004